Telomerase inhibition improves tumor response to radiotherapy in a murine orthotopic model of human glioblastoma
Glioblastoma (GBM) is the most frequent and aggressive type of adult brain tumor. Most GBMs express telomerase; a high level of intra-tumoral telomerase activity (TA) is predictive of poor prognosis. Thus, telomerase inhibitors are promising options to treat GBM. These inhibitors increase the respon...
Gespeichert in:
Veröffentlicht in: | Molecular cancer 2015-07, Vol.14 (1), p.134-134, Article 134 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma (GBM) is the most frequent and aggressive type of adult brain tumor. Most GBMs express telomerase; a high level of intra-tumoral telomerase activity (TA) is predictive of poor prognosis. Thus, telomerase inhibitors are promising options to treat GBM. These inhibitors increase the response to radiotherapy (RT), in vitro as well as in vivo. Since typical treatments for GBM include RT, our objective was to evaluate the efficiency of Imetelstat (TA inhibitor) combined with RT.
We used a murine orthotopic model of human GBM (N = 8 to11 mice per group) and μMRI imaging to evaluate the efficacy of Imetelstat (delivered by intra-peritoneal injection) alone and combined with RT. Using a clinically established protocol, we demonstrated that Imetelstat significantly: (i) inhibited the TA in the very center of the tumor, (ii) reduced tumor volume as a proportion of TA inhibition, and (iii) increased the response to RT, in terms of tumor volume regression and survival increase.
Imetelstat is currently evaluated in refractory brain tumors in young patients (without RT). Our results support its clinical evaluation combined with RT to treat GBM. |
---|---|
ISSN: | 1476-4598 1476-4598 |
DOI: | 10.1186/s12943-015-0376-3 |