Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2

STUDY QUESTION Does intrauterine biosynthesis of estrogen play an important role in early pregnancy by altering the function of uterine natural killer (uNK) cells? SUMMARY ANSWER Estrogens directly regulate the function of human uNK cells by increasing uNK cell migration and secretion of uNK cell-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2015-06, Vol.30 (6), p.1290-1301
Hauptverfasser: Gibson, D.A., Greaves, E., Critchley, H.O.D., Saunders, P.T.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:STUDY QUESTION Does intrauterine biosynthesis of estrogen play an important role in early pregnancy by altering the function of uterine natural killer (uNK) cells? SUMMARY ANSWER Estrogens directly regulate the function of human uNK cells by increasing uNK cell migration and secretion of uNK cell-derived chemokine (C-C motif) ligand 2 (CCL2) that critically facilitates uNK-mediated angiogenesis. WHAT IS KNOWN ALREADY uNK cells are a phenotypically distinct population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. Recently we discovered that decidualisation of human endometrial stromal cells results in the generation of an estrogen-rich microenvironment in areas of decidualised endometrium. We hypothesize that intrauterine biosynthesis of estrogens plays an important role in early pregnancy by altering the function of uNK cells. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human uNK cells which were isolated from first trimester human decidua (n = 32). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary uNK cells were isolated from first trimester human decidua using magnetic cell sorting. The impact of estrogens on uNK cell function was assessed. Isolated uNK cells were treated with estrone (E1, 10−8 M) or estradiol (E2, 10−8 M) alone or in combination with the anti-estrogen ICI 182 780 (ICI, 10−6 M). uNK cell motility was assessed by transwell migration assay and time-lapse microscopy. Expression of chemokine receptors was assessed by quantitative PCR (qPCR) and immunohistochemistry, and angiogenic factors were assessed by qPCR and cytokine array. Concentrations of CCL2 in supernatants were measured by enzyme-linked immunosorbent assay. Angiogenesis was assessed in a human endometrial endothelial cell network formation assay. MAIN RESULTS AND THE ROLE OF CHANCE Treatment with either E1 or E2 increased uNK cell migration (P = 0.0092 and P = 0.0063, respectively) compared with control. Co-administration of the anti-estrogen ICI blocked the effects of E1 and E2 on cell migration. Concentrations of C-X-C chemokine receptor type 4 (CXCR4) mRNA in uNK cells were increased by E2 treatment. The network formation assay revealed that conditioned media from uNK cells treated with E2 significantly increased human endometrial endothelial cell (HEEC) angiogenesis (P = 0.0029 versus control). Analysis of media from uNK cells treated with E2 using an antibody array identified CCL2 as the most a
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/dev067