A Salt-Induced Reno-Cerebral Reflex Activates Renin-Angiotensin Systems and Promotes CKD Progression
Salt intake promotes progression of CKD by uncertain mechanisms. We hypothesized that a salt-induced reno-cerebral reflex activates a renin-angiotensin axis to promote CKD. Sham-operated and 5/6-nephrectomized rats received a normal-salt (0.4%), low-salt (0.02%), or high-salt (4%) diet for 2 weeks....
Gespeichert in:
Veröffentlicht in: | Journal of the American Society of Nephrology 2015-07, Vol.26 (7), p.1619-1633 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salt intake promotes progression of CKD by uncertain mechanisms. We hypothesized that a salt-induced reno-cerebral reflex activates a renin-angiotensin axis to promote CKD. Sham-operated and 5/6-nephrectomized rats received a normal-salt (0.4%), low-salt (0.02%), or high-salt (4%) diet for 2 weeks. High salt in 5/6-nephrectomized rats increased renal NADPH oxidase, inflammation, BP, and albuminuria. Furthermore, high salt activated the intrarenal and cerebral, but not the systemic, renin-angiotensin axes and increased the activity of renal sympathetic nerves and neurons in the forebrain of these rats. Renal fibrosis was increased 2.2-fold by high versus low salt, but intracerebroventricular tempol, losartan, or clonidine reduced this fibrosis by 65%, 69%, or 59%, respectively, and renal denervation or deafferentation reduced this fibrosis by 43% or 38%, respectively (all P |
---|---|
ISSN: | 1046-6673 1533-3450 |
DOI: | 10.1681/ASN.2014050518 |