Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)

Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-06, Vol.137 (24), p.7921-7928
Hauptverfasser: Winston, Matthew S, Wolf, William J, Toste, F. Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7928
container_issue 24
container_start_page 7921
container_title Journal of the American Chemical Society
container_volume 137
creator Winston, Matthew S
Wolf, William J
Toste, F. Dean
description Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramatic reactivity and kinetic selectivity dependence on halide ligand. For X = I or F, zero-order kinetic behavior is observed, while for X = Cl or Br, kinetic studies implicate product catalysis. The selectivity for Caryl–CF3 bond formation increases in the order X = I < Br < Cl < F, with exclusively Caryl–I bond formation when X = I, and exclusively Caryl–CF3 bond formation when X = F. Thermodynamic measurements show that Au­(III)–X bond dissociation energies increase in the order X = I < Br < Cl, and that ground state Au­(III)–X bond strength ultimately dictates selectivities for Caryl–X and Caryl–CF3 reductive elimination.
doi_str_mv 10.1021/jacs.5b04613
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825510393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-3279425e28eacfa891b0bd653018179ffab064ec1837b9c8009578085928cd893</originalsourceid><addsrcrecordid>eNqFkctr3DAQxkVJaDZpbz0HH1OoE83ofQmUbR4LCYHSnoUsy40W29pYdqD_fb1kmzYQyGkY5jffPD5CPgE9BYpwtnY-n4qKcgnsHVmAQFoKQLlHFpRSLJWW7IAc5ryeU44a3pMDlFQKhbggy2vXxjqU38Im9HXox-I2-HvXx9zlIjXF91BPfoyPobhoYxd7N8bUF82QuuIqtfXJarX6_IHsN67N4eMuHpGflxc_ltflzd3Vavn1pnRcs7FkqAxHEVAH5xunDVS0qqVgFDQo0zSuopIHD5qpynhNqRFKUy0Mal9rw47I-ZPuZqq6UPt528G1djPEzg2_bXLRvqz08d7-So-Wc40cxCxwshMY0sMU8mi7mH1oW9eHNGWLnIEWiqF8EwWNQgBlhr2NSgNouAI1o1-eUD-knIfQPC8P1G7dtFs37c7NGT_-_-Bn-K99_0Zvu9ZpGvr5_69r_QGmfKYv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691294717</pqid></control><display><type>article</type><title>Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Winston, Matthew S ; Wolf, William J ; Toste, F. Dean</creator><creatorcontrib>Winston, Matthew S ; Wolf, William J ; Toste, F. Dean</creatorcontrib><description>Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramatic reactivity and kinetic selectivity dependence on halide ligand. For X = I or F, zero-order kinetic behavior is observed, while for X = Cl or Br, kinetic studies implicate product catalysis. The selectivity for Caryl–CF3 bond formation increases in the order X = I &lt; Br &lt; Cl &lt; F, with exclusively Caryl–I bond formation when X = I, and exclusively Caryl–CF3 bond formation when X = F. Thermodynamic measurements show that Au­(III)–X bond dissociation energies increase in the order X = I &lt; Br &lt; Cl, and that ground state Au­(III)–X bond strength ultimately dictates selectivities for Caryl–X and Caryl–CF3 reductive elimination.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b04613</identifier><identifier>PMID: 26065722</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bonding ; Bonding strength ; Bromides - chemistry ; bromine ; catalytic activity ; Chlorides - chemistry ; dissociation ; Fluorides - chemistry ; Free energy ; gold ; Halides ; Halogens - chemistry ; Heat of formation ; Hot Temperature ; Iodides - chemistry ; iodine ; Ligands ; Models, Molecular ; Organogold Compounds - chemistry ; Oxidation-Reduction ; Reaction kinetics ; Selectivity ; thermal degradation ; Thermodynamics</subject><ispartof>Journal of the American Chemical Society, 2015-06, Vol.137 (24), p.7921-7928</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-3279425e28eacfa891b0bd653018179ffab064ec1837b9c8009578085928cd893</citedby><cites>FETCH-LOGICAL-a483t-3279425e28eacfa891b0bd653018179ffab064ec1837b9c8009578085928cd893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b04613$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b04613$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26065722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winston, Matthew S</creatorcontrib><creatorcontrib>Wolf, William J</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><title>Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramatic reactivity and kinetic selectivity dependence on halide ligand. For X = I or F, zero-order kinetic behavior is observed, while for X = Cl or Br, kinetic studies implicate product catalysis. The selectivity for Caryl–CF3 bond formation increases in the order X = I &lt; Br &lt; Cl &lt; F, with exclusively Caryl–I bond formation when X = I, and exclusively Caryl–CF3 bond formation when X = F. Thermodynamic measurements show that Au­(III)–X bond dissociation energies increase in the order X = I &lt; Br &lt; Cl, and that ground state Au­(III)–X bond strength ultimately dictates selectivities for Caryl–X and Caryl–CF3 reductive elimination.</description><subject>Bonding</subject><subject>Bonding strength</subject><subject>Bromides - chemistry</subject><subject>bromine</subject><subject>catalytic activity</subject><subject>Chlorides - chemistry</subject><subject>dissociation</subject><subject>Fluorides - chemistry</subject><subject>Free energy</subject><subject>gold</subject><subject>Halides</subject><subject>Halogens - chemistry</subject><subject>Heat of formation</subject><subject>Hot Temperature</subject><subject>Iodides - chemistry</subject><subject>iodine</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Organogold Compounds - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Reaction kinetics</subject><subject>Selectivity</subject><subject>thermal degradation</subject><subject>Thermodynamics</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctr3DAQxkVJaDZpbz0HH1OoE83ofQmUbR4LCYHSnoUsy40W29pYdqD_fb1kmzYQyGkY5jffPD5CPgE9BYpwtnY-n4qKcgnsHVmAQFoKQLlHFpRSLJWW7IAc5ryeU44a3pMDlFQKhbggy2vXxjqU38Im9HXox-I2-HvXx9zlIjXF91BPfoyPobhoYxd7N8bUF82QuuIqtfXJarX6_IHsN67N4eMuHpGflxc_ltflzd3Vavn1pnRcs7FkqAxHEVAH5xunDVS0qqVgFDQo0zSuopIHD5qpynhNqRFKUy0Mal9rw47I-ZPuZqq6UPt528G1djPEzg2_bXLRvqz08d7-So-Wc40cxCxwshMY0sMU8mi7mH1oW9eHNGWLnIEWiqF8EwWNQgBlhr2NSgNouAI1o1-eUD-knIfQPC8P1G7dtFs37c7NGT_-_-Bn-K99_0Zvu9ZpGvr5_69r_QGmfKYv</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Winston, Matthew S</creator><creator>Wolf, William J</creator><creator>Toste, F. Dean</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150624</creationdate><title>Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)</title><author>Winston, Matthew S ; Wolf, William J ; Toste, F. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-3279425e28eacfa891b0bd653018179ffab064ec1837b9c8009578085928cd893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bonding</topic><topic>Bonding strength</topic><topic>Bromides - chemistry</topic><topic>bromine</topic><topic>catalytic activity</topic><topic>Chlorides - chemistry</topic><topic>dissociation</topic><topic>Fluorides - chemistry</topic><topic>Free energy</topic><topic>gold</topic><topic>Halides</topic><topic>Halogens - chemistry</topic><topic>Heat of formation</topic><topic>Hot Temperature</topic><topic>Iodides - chemistry</topic><topic>iodine</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Organogold Compounds - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Reaction kinetics</topic><topic>Selectivity</topic><topic>thermal degradation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winston, Matthew S</creatorcontrib><creatorcontrib>Wolf, William J</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winston, Matthew S</au><au>Wolf, William J</au><au>Toste, F. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>137</volume><issue>24</issue><spage>7921</spage><epage>7928</epage><pages>7921-7928</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramatic reactivity and kinetic selectivity dependence on halide ligand. For X = I or F, zero-order kinetic behavior is observed, while for X = Cl or Br, kinetic studies implicate product catalysis. The selectivity for Caryl–CF3 bond formation increases in the order X = I &lt; Br &lt; Cl &lt; F, with exclusively Caryl–I bond formation when X = I, and exclusively Caryl–CF3 bond formation when X = F. Thermodynamic measurements show that Au­(III)–X bond dissociation energies increase in the order X = I &lt; Br &lt; Cl, and that ground state Au­(III)–X bond strength ultimately dictates selectivities for Caryl–X and Caryl–CF3 reductive elimination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26065722</pmid><doi>10.1021/jacs.5b04613</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-06, Vol.137 (24), p.7921-7928
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482415
source MEDLINE; American Chemical Society Journals
subjects Bonding
Bonding strength
Bromides - chemistry
bromine
catalytic activity
Chlorides - chemistry
dissociation
Fluorides - chemistry
Free energy
gold
Halides
Halogens - chemistry
Heat of formation
Hot Temperature
Iodides - chemistry
iodine
Ligands
Models, Molecular
Organogold Compounds - chemistry
Oxidation-Reduction
Reaction kinetics
Selectivity
thermal degradation
Thermodynamics
title Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halide-Dependent%20Mechanisms%20of%20Reductive%20Elimination%20from%20Gold(III)&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Winston,%20Matthew%20S&rft.date=2015-06-24&rft.volume=137&rft.issue=24&rft.spage=7921&rft.epage=7928&rft.pages=7921-7928&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b04613&rft_dat=%3Cproquest_pubme%3E1825510393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691294717&rft_id=info:pmid/26065722&rfr_iscdi=true