Halide-Dependent Mechanisms of Reductive Elimination from Gold(III)

Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-06, Vol.137 (24), p.7921-7928
Hauptverfasser: Winston, Matthew S, Wolf, William J, Toste, F. Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two unique organometallic halide series (Ph3P)­Au­(4-Me-C6H4)­(CF3)­(X) and (Cy3P)­Au­(4-F-C6H4)­(CF3)­(X) (X = I, Br, Cl, F) have been synthesized. The PPh3-supported complexes can undergo both Caryl–X and Caryl–CF3 reductive elimination. Mechanistic studies of thermolysis at 122 °C reveal a dramatic reactivity and kinetic selectivity dependence on halide ligand. For X = I or F, zero-order kinetic behavior is observed, while for X = Cl or Br, kinetic studies implicate product catalysis. The selectivity for Caryl–CF3 bond formation increases in the order X = I < Br < Cl < F, with exclusively Caryl–I bond formation when X = I, and exclusively Caryl–CF3 bond formation when X = F. Thermodynamic measurements show that Au­(III)–X bond dissociation energies increase in the order X = I < Br < Cl, and that ground state Au­(III)–X bond strength ultimately dictates selectivities for Caryl–X and Caryl–CF3 reductive elimination.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.5b04613