Evaluating the impact of an integrated computer-based decision support with person-centered analytics for the management of asthma in primary care: a randomized controlled trial

Background Computer-based decision support has been effective in providing alerts for preventive care. Our objective was to determine whether a personalized asthma management computer-based decision support increases the quality of asthma management and reduces the rate of out-of-control episodes. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2015-07, Vol.22 (4), p.773-783
Hauptverfasser: Tamblyn, Robyn, Ernst, Pierre, Winslade, Nancy, Huang, Allen, Grad, Roland, Platt, Robert W, Ahmed, Sara, Moraga, Teresa, Eguale, Tewodros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Computer-based decision support has been effective in providing alerts for preventive care. Our objective was to determine whether a personalized asthma management computer-based decision support increases the quality of asthma management and reduces the rate of out-of-control episodes. Methods A cluster-randomized trial was conducted in Quebec, Canada among 81 primary care physicians and 4447 of their asthmatic patients. Patients were followed from the first visit for 3–33 months. The physician control group used the Medical Office of the 21st century (MOXXI) system, an integrated electronic health record. A custom-developed asthma decision support system was integrated within MOXXI and was activated for physicians in the intervention group. Results At the first visit, 9.8% (intervention) to 12.9% (control) of patients had out-of-control asthma, which was defined as a patient having had an emergency room visit or hospitalization for respiratory-related problems and/or more than 250 doses of fast-acting β-agonist (FABA) dispensed in the past 3 months. By the end of the trial, there was a significant increase in the ratio of doses of inhaled corticosteroid use to fast-acting β-agonist (0.93 vs. 0.69: difference: 0.27; 95% CI: 0.02–0.51; P = 0.03) in the intervention group. The overall out-of-control asthma rate was 54.7 (control) and 46.2 (intervention) per 100 patients per year (100 PY), a non-significant rate difference of −8.7 (95% CI: −24.7, 7.3; P = 0.29). The intervention’s effect was greater for patients with out-of-control asthma at the beginning of the study, a group who accounted for 44.7% of the 5597 out-of-control asthma events during follow-up, as there was a reduction in the event rate of −28.4 per 100 PY (95% CI: −55.6, −1.2; P = 0.04) compared to patients with in-control asthma at the beginning of the study (−0.08 [95% CI: −10.3, 8.6; P = 0.86]). Discussion This study evaluated the effectiveness of a novel computer-assisted ADS system that facilitates systematic monitoring of asthma control status, follow-up of patients with out of control asthma, and evidence-based, patient-specific treatment recommendations. We found that physicians were more likely to use ADS for out-of-control patients, that in the majority of these patients, they were advised to add an inhaled corticosteroid or a leukotriene inhibitor to the patient s treatment regimen, and the intervention significantly increased the mean ratio of inhaled corticosteroids to
ISSN:1067-5027
1527-974X
DOI:10.1093/jamia/ocu009