Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2015-10, Vol.230 (10), p.2533-2542
Hauptverfasser: Scott, Robert E., Ghule, Prachi N., Stein, Janet L., Stein, Gary S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co‐vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty‐three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability. J. Cell. Physiol. 230: 2533–2542, 2015. © 2015 Wiley Periodicals, Inc.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.24990