High-density IgE recognition of the major grass pollen allergen Phl p 1 revealed with single-chain IgE antibody fragments obtained by combinatorial cloning

The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ∼25-30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2015-03, Vol.194 (5), p.2069-2078
Hauptverfasser: Madritsch, Christoph, Gadermaier, Elisabeth, Roder, Uwe W, Lupinek, Christian, Valenta, Rudolf, Flicker, Sabine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ∼25-30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen-allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1-derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens' C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients' polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1402185