Omega-3 Fatty Acids Augment the Actions of Nuclear Receptor Agonists in a Mouse Model of Alzheimer's Disease
Alzheimer's disease (AD) is a highly prevalent disorder for which there are no effective therapies. Accumulation of amyloid β (Aβ) peptides in the brain is associated with impaired cognition and memory, pronounced inflammatory dysregulation, and subsequent amyloid plaque deposition. Thus, drugs...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2015-06, Vol.35 (24), p.9173-9181 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer's disease (AD) is a highly prevalent disorder for which there are no effective therapies. Accumulation of amyloid β (Aβ) peptides in the brain is associated with impaired cognition and memory, pronounced inflammatory dysregulation, and subsequent amyloid plaque deposition. Thus, drugs that promote the clearance of Aβ peptides and resolution of inflammation may represent viable therapeutic approaches. Agonists of nuclear receptors LXR:RXR and PPAR:RXR act to ameliorate AD-related cognitive impairment and amyloid accumulation in murine models of AD. The use of an agonist to the nuclear receptor RXR, bexarotene, as monotherapy against AD, presents potential challenges due to the metabolic perturbations it induces in the periphery, most prominently hypertriglyceridemia. We report that the ω-3 fatty acid docosahexaenoic acid (DHA), in combination with bexarotene, enhances LXR:RXR target gene expression of Abca1 and ApoE, reduces soluble forms of Aβ, and abrogates release of pro-inflammatory cytokines and mediators both in vitro and in a mouse model of AD. Moreover, DHA abrogates bexarotene-induced hypertriglyceridemia in vivo. Importantly, dual therapy promotes reductions in AD pathology and resultant amelioration of cognitive deficits. While monotherapy with either bexarotene or DHA resulted in modest effects in vitro and in vivo, combined treatment with both agents produced a significant additive benefit on associated AD-related phenotypes, suggesting that targeted combinatorial agents may be beneficial over single agents alone in treating AD. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.1000-15.2015 |