Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation

The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Twenty three MOTUs were obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2015-06, Vol.15 (1), p.142-142, Article 142
Hauptverfasser: Khoyratty, Shahnoo, Dupont, Joëlle, Lacoste, Sandrine, Palama, Tony Lionel, Choi, Young Hae, Kim, Hye Kyong, Payet, Bertrand, Grisoni, Michel, Fouillaud, Mireille, Verpoorte, Robert, Kodja, Hippolyte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Twenty three MOTUs were obtained, representing 6 fungal classes. Fungi from green pods were cultured on mature green pod based media for 30 days followed by (1)H NMR and HPLC-DAD analysis. All fungi from pods consumed metabolized vanilla flavor phenolics. Though Fusarium proliferatum was recovered more often (37.6% of the isolates), it is Pestalotiopsis microspora (3.0%) that increased the absolute amounts (quantified by (1)H NMR in μmol/g DW green pods) of vanillin (37.0 × 10(-3)), vanillyl alcohol (100.0 × 10(-3)), vanillic acid (9.2 × 10(-3)) and p-hydroxybenzoic acid (87.9 × 10(-3)) by significant amounts. All plants studied contained endophytic fungi and the isolation of the endophytes was conducted from plant organs at nine sites in Réunion Island including under shade house and undergrowth conditions. Endophytic variation occured between cultivation practices and the type of organ. Given the physical proximity of fungi inside pods, endophytic biotransformation may contribute to the complexity of vanilla flavors.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-015-0522-5