Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates

Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathogens and disease 2015-08, Vol.73 (6), p.ftv036-ftv036
Hauptverfasser: Santiago, Araceli E., Mann, Barbara J., Qin, Aiping, Cunningham, Aimee L., Cole, Leah E., Grassel, Christen, Vogel, Stefanie N., Levine, Myron M., Barry, Eileen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 105 CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development. Mutations in guanine biosynthesis genes, but not in four other hypothetical virulence factors in highly virulent Francisella tularensis strain Schu S4 resulted in attenuation in macrophage replication and mouse virulence.
ISSN:2049-632X
2049-632X
DOI:10.1093/femspd/ftv036