Investigation of the 3-D actinic flux field in mountainous terrain

During three field campaigns spectral actinic flux was measured from 290–500nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric research 2011-11, Vol.102 (3), p.300-310
Hauptverfasser: Wagner, J.E., Angelini, F., Blumthaler, M., Fitzka, M., Gobbi, G.P., Kift, R., Kreuter, A., Rieder, H.E., Simic, S., Webb, A., Weihs, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During three field campaigns spectral actinic flux was measured from 290–500nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account. ► UV actiniv flux was measured and modeled in mountainous terrain. ► Impact of snow cover at distances above 5km was below 5%. ► 3-D-model has similar accuracy as 1-D-model. ► The spatial distribution of surface actinic flux is more realistic in 3-D-model.
ISSN:0169-8095
1873-2895
DOI:10.1016/j.atmosres.2011.07.008