The liquid-vapor equilibria of TIP4P/2005 and BLYPSP-4F water models determined through direct simulations of the liquid-vapor interface
In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation fo...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-06, Vol.142 (21), p.214507-214507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation formula is proposed that can be used to determine the infinite rvdw surface tension through a few simulations with finite rvdw. A procedure for determining liquid and vapor densities is proposed that does not require fitting to a profile function. Although the critical temperature of water is also found to depend on the choice of rvdw, the dependence is weaker. We argue that a rvdw of 1.75 nm is a good compromise for water simulations when long-range van der Waals correction is not applied. Since the majority of computational programs do not support rigorous treatment of long-range dispersion, the establishment of a minimal acceptable rvdw is important for the simulation of a variety of inhomogeneous systems, such as water bubbles, and water in confined environments. The BLYPSP-4F model predicts room temperature surface tension marginally better than TIP4P/2005 but overestimates the critical temperature. This is expected since only liquid configurations were fit during the development of the BLYPSP-4F potential. The potential is expected to underestimate the stability of vapor and thus overestimate the region of stability for the liquid. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4922166 |