UnoViS: the MedIT public unobtrusive vital signs database

While PhysioNet is a large database for standard clinical vital signs measurements, such a database does not exist for unobtrusively measured signals. This inhibits progress in the vital area of signal processing for unobtrusive medical monitoring as not everybody owns the specific measurement syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health information science and systems 2015-06, Vol.3 (1), p.2-2, Article 2
Hauptverfasser: Wartzek, Tobias, Czaplik, Michael, Antink, Christoph Hoog, Eilebrecht, Benjamin, Walocha, Rafael, Leonhardt, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While PhysioNet is a large database for standard clinical vital signs measurements, such a database does not exist for unobtrusively measured signals. This inhibits progress in the vital area of signal processing for unobtrusive medical monitoring as not everybody owns the specific measurement systems to acquire signals. Furthermore, if no common database exists, a comparison between different signal processing approaches is not possible. This gap will be closed by our UnoViS database. It contains different recordings in various scenarios ranging from a clinical study to measurements obtained while driving a car. Currently, 145 records with a total of 16.2 h of measurement data is available, which are provided as MATLAB files or in the PhysioNet WFDB file format. In its initial state, only (multichannel) capacitive ECG and unobtrusive PPG signals are, together with a reference ECG, included. All ECG signals contain annotations by a peak detector and by a medical expert. A dataset from a clinical study contains further clinical annotations. Additionally, supplementary functions are provided, which simplify the usage of the database and thus the development and evaluation of new algorithms. The development of urgently needed methods for very robust parameter extraction or robust signal fusion in view of frequent severe motion artifacts in unobtrusive monitoring is now possible with the database.
ISSN:2047-2501
2047-2501
DOI:10.1186/s13755-015-0010-1