Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana

In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2015-06, Vol.66 (11), p.3325-3337
Hauptverfasser: Burdiak, Paweł, Rusaczonek, Anna, Witoń, Damian, Głów, Dawid, Karpiński, Stanisław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erv143