LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a

Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor mediating Wnt signaling pathway. Our previous studies indicate that LEF1 is highly expressed in androgen-independent prostate cancer (PCa) and enhances invasion ability in androgen-independent PCa cells. However, the molecular m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of cancer research 2015-01, Vol.5 (3), p.1124-1132
Hauptverfasser: Liang, Jiaqian, Li, Xin, Li, Yirong, Wei, Jianjun, Daniels, Garrett, Zhong, Xuelin, Wang, Jinhua, Sfanos, Karen, Melamed, Jonathan, Zhao, Jun, Lee, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor mediating Wnt signaling pathway. Our previous studies indicate that LEF1 is highly expressed in androgen-independent prostate cancer (PCa) and enhances invasion ability in androgen-independent PCa cells. However, the molecular mechanism of LEF1 effect on invasion remains largely unknown. Using microRNA profiling analysis comparing androgen-independent LNCaP-AI PCa cells with high levels of endogenous LEF1 to LNCaP-AI cells with LEF1 knockdown by LEF1shRNA, we found miR-181a to be increased 12.3-fold in LNCaP-AI cells. We confirmed a positive correlation between LEF1 and miR-181a expression across multiple PCa cell lines. Additionally, we showed that in PCa cells, overexpression of LEF1 increased miR-181a expression and subsequently induced EMT associated migration and invasion, whereas LEF1 knockdown decreased miR-181a expression and subsequently resulted in inhibition of EMT, migration and invasion. Mechanistically, we demonstrated by chromatin immunoprecipitation assays that LEF1 could enhance miR-181a expression via its binding to the promoter regions of hsa-miR-181a. Overall, this study identified a novel LEF1-miR-181a-EMT axis in regulation of PCa migration and invasion.
ISSN:2156-6976
2156-6976