Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions

Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2014-12, Vol.1 (4), p.140211-140211
1. Verfasser: Box, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.140211