Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair

The cellular function of active DNA demethylation in neurons is not well understood. Here, Song and colleagues show that synaptic activity modulates Tet3 signaling, which in turn regulates glutamatergic synaptic transmission and synaptic scaling. Their work identifies Tet3 as a synaptic activity sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2015-06, Vol.18 (6), p.836-843
Hauptverfasser: Yu, Huimei, Su, Yijing, Shin, Jaehoon, Zhong, Chun, Guo, Junjie U, Weng, Yi-Lan, Gao, Fuying, Geschwind, Daniel H, Coppola, Giovanni, Ming, Guo-li, Song, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cellular function of active DNA demethylation in neurons is not well understood. Here, Song and colleagues show that synaptic activity modulates Tet3 signaling, which in turn regulates glutamatergic synaptic transmission and synaptic scaling. Their work identifies Tet3 as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation. Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation.
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.4008