Immune parameters of patients treated with laquinimod, a novel oral therapy for the treatment of multiple sclerosis: results from a double‐blind placebo‐controlled study

Laquinimod is a novel orally administered drug for the treatment of relapsing remitting multiple sclerosis (RRMS). In this immunological substudy of the phase III Assessment of Oral Laquinimod in Preventing Progression of MS (ALLEGRO) trial, we performed an ex vivo and in vitro analysis of effects e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity, Inflammation and Disease Inflammation and Disease, 2015-06, Vol.3 (2), p.45-55
Hauptverfasser: Stasiolek, Mariusz, Linker, Ralf A., Hayardeny, Liat, Bar Ilan, Oren, Gold, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laquinimod is a novel orally administered drug for the treatment of relapsing remitting multiple sclerosis (RRMS). In this immunological substudy of the phase III Assessment of Oral Laquinimod in Preventing Progression of MS (ALLEGRO) trial, we performed an ex vivo and in vitro analysis of effects exerted by laquinimod on peripheral blood immune cell populations from RRMS patients with a special focus on monocyte phenotype and function. Approximately 100 patients were enrolled following a standardized protocol. Half of the patients received laquinimod and the other half received placebo. Peripheral blood samples were collected prior to commencement of therapy and after 1, 3, 6, 12, and 24 months of continuous therapy. Main lymphocytic and antigen presenting cell fractions were analyzed in peripheral blood mononuclear cells (PBMCs) ex vivo by flow cytometry. The proliferative response of PBMCs to mitogen or recall antigen was assessed in culture experiments. Untouched monocytes were sorted magnetically and cultured under pro‐inflammatory conditions. PBMC analysis showed no significant differences of investigated lymphocytic and antigen presenting cell populations over time within each group, or between the two groups. However, the detailed in vitro analysis of monocytes demonstrated a lower level of CD86 expression on monocytes stimulated with LPS in laquinimod patients beginning from the 1st month of treatment. Upon pro‐inflammatory stimulation, monocytes obtained from laquinimod treated patients tended to secrete lower levels of the proinflammatory chemokines CCL2 or CCL5. Taken together, in this prospective study, we demonstrate immune modulation but no immunosuppressive biological activity of laquinimod in a large group of MS patients. The laquinimod treatment in relapsing‐remising MS patients exerts immunomodulatory but not immunosuppressive biological activity. Importantly, the laquinimod associated regulatory mechanisms seemed to be specific for particular immune cell populations, especially monocytes and strongly depend on the type of inflammatory stimulation including innate immunity signals.
ISSN:2050-4527
2050-4527
DOI:10.1002/iid3.42