Decreased expression of microRNA-130a correlates with TNF-α in the development of osteoarthritis
Increased expression of tumor necrosis factor a (TNF-α) has emerged as an important inflammatory factor in osteoarthritis (OA) and other joint diseases. The study was performed to investigate whether the expression of TNF-α in human chondrocytes was regulated by miRNAs. MiRNA-130a and TNF-α expressi...
Gespeichert in:
Veröffentlicht in: | International journal of clinical and experimental pathology 2015-01, Vol.8 (3), p.2555-2564 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increased expression of tumor necrosis factor a (TNF-α) has emerged as an important inflammatory factor in osteoarthritis (OA) and other joint diseases. The study was performed to investigate whether the expression of TNF-α in human chondrocytes was regulated by miRNAs.
MiRNA-130a and TNF-α expression in cartilage specimens was examined in patients with knee osteoarthritis, chondrocytes and osteoarthritis rat model. Chondrocytes were transfected with siRNAs as a gene silencing methods. Expression of genes and proteins were analyzed by real-time PCR and western blotting respectively.
Increased TNF-α and decreased miRNA-130a were observed in tissues from osteoarthritis patients. Moreover, we found a highly negitive correlation between miRNA-130a and TNF-α. Next, miRNA-130a loss-of-function increased the expression of TNF-α and promoted inflammation in chondrocytes. It was reasonable that miRNA-130a regulated a distinct underlying molecular and pathogenic mechanism of OA by forming a negative feedback loop with TNF-α. Furthermore, there were the abnormalities of bone metabolism in OA rat, which showed the miRNA-130a and TNF-α dysfunction that was one of important factors for the occurrence and development of OA.
Our results indicated that miR-130a played an important role in regulating the expression of TNF-α in human chondrocytes and identified miR-130a as a novel therapeutic target in OA. |
---|---|
ISSN: | 1936-2625 |