MicroRNA-218 and microRNA-520a inhibit cell proliferation by downregulating E2F2 in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the fifth most common cancer type worldwide and the third leading cause of cancer-associated mortality. To date, its pathogenesis has remained poorly understood. Previous studies have demonstrated that deregulated microRNA (miR) participates in hepatocarcinogenesis....
Gespeichert in:
Veröffentlicht in: | Molecular medicine reports 2015-07, Vol.12 (1), p.1016-1022 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hepatocellular carcinoma (HCC) is the fifth most common cancer type worldwide and the third leading cause of cancer-associated mortality. To date, its pathogenesis has remained poorly understood. Previous studies have demonstrated that deregulated microRNA (miR) participates in hepatocarcinogenesis. In the present study, miR-218 and miR-520a were observed to be downregulated in human HCC cells relative to normal hepatic cells. Overexpression of miR-218 or miR-520a inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase checkpoint. Furthermore, a dual-luciferase reporter assay identified that E2F2 was a novel direct target of miR-218 but not miR-520a in HCC. In addition, miR-218 and miR-520a were observed to negatively regulate E2F2 mRNA and protein levels. This suggested that miR-218 regulated the expression of E2F2 via directly binding to its 3′-untranslated region, whereas miR-520a affected E2F2 expression indirectly. In conclusion, these results indicated that miR-218 and miR-520a are crucial in the development of HCC via the inhibition of cell proliferation and cycle progression by downregulating E2F2. |
---|---|
ISSN: | 1791-2997 1791-3004 |
DOI: | 10.3892/mmr.2015.3516 |