Proteomic analysis of muscle between hybrid abalone and parental lines Haliotis gigantea Reeve and Haliotis discus hannai Ino
To understand the potential molecular mechanism of heterosis, protein expression patterns were compared from hybrids of Haliotis gigantea (G) and Haliotis discus hannai (D) using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight...
Gespeichert in:
Veröffentlicht in: | Heredity 2015-06, Vol.114 (6), p.564-574 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To understand the potential molecular mechanism of heterosis, protein expression patterns were compared from hybrids of Haliotis gigantea (G) and Haliotis discus hannai (D) using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analyses. Expression differences were observed in muscle samples from the four groups with 673±21.0 stained spots for H. discus hannai ♀ × H. discus hannai ♂ (DD), 692±25.6 for H. gigantea ♀ × H. gigantea ♂ (GG), 679±16.2 for H. discus hannai ♀ × H. gigantea ♂ (DG) (F1 hybrid) and 700±19 for H. gigantea ♀ × H. discus hannai ♂ (GD) (F1 hybrid). Different 2-DE image muscle protein spots had a mirrored relationship between purebreds and the F1 hybrid, suggesting that all stained spots in F1 hybrid muscle were on 2-DEs from parents. DD and DG clustered together first, and then clustered with GD, whereas the distance of DD and GG was maximal according to hierarchical cluster analysis. We identified 136 differentially expressed protein spots involved in major biological processes, including energy metabolism and stress response. Most energy metabolism proteins were additive, and stress-induced proteins displayed additivity or over-dominance. In these 136 identified protein spots, hybrid offspring with additivity or over-dominance accounted for 68.38%. Data show that a proteomic approach can provide functional prediction of abalone interspecific hybridization. |
---|---|
ISSN: | 0018-067X 1365-2540 |
DOI: | 10.1038/hdy.2014.124 |