Progesterone Receptor Transcriptome and Cistrome in Decidualized Human Endometrial Stromal Cells
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is kn...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2015-06, Vol.156 (6), p.2239-2253 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is known to interact with certain members of the activator protein-1 (AP-1) family in the regulation of transcription. In this study, we identified the cistrome and transcriptome of PGR and identified the AP-1 factors FOSL2 and JUN to be regulated by PGR and important in the decidualization process. Direct targets of PGR were identified by integrating gene expression data from RNA sequencing with the whole-genome binding profile of PGR determined by chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in primary human endometrial stromal cells exposed to 17β-estradiol, medroxyprogesterone acetate, and cAMP to promote in vitro decidualization. Ablation of FOSL2 and JUN attenuates the induction of 2 decidual marker genes, IGFBP1 and PRL. ChIP-seq analysis of genomic binding revealed that FOSL2 is bound in proximity to 8586 distinct genes, including nearly 80% of genes bound by PGR. A comprehensive assessment of the PGR-dependent decidual transcriptome integrated with the genomic binding of PGR identified FOSL2 as a potentially important transcriptional coregulator of PGR via direct interaction with regulatory regions of genes actively regulated during decidualization. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2014-1566 |