Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1
Abstract Claudin-5 is transcriptionally downregulated resulting in dramatically reduced protein levels in human heart failure. Studies in mice have demonstrated that reduced claudin-5 levels occur prior to cardiac damage and far before reduced whole heart function. Therefore, claudin-5 may be a usef...
Gespeichert in:
Veröffentlicht in: | Cardiovascular pathology 2015-05, Vol.24 (3), p.160-167 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Claudin-5 is transcriptionally downregulated resulting in dramatically reduced protein levels in human heart failure. Studies in mice have demonstrated that reduced claudin-5 levels occur prior to cardiac damage and far before reduced whole heart function. Therefore, claudin-5 may be a useful early therapeutic target for human heart failure. However, the cell types in which claudin-5 is localized in human heart and from which claudin-5 is reduced in heart failure is not known. The recent identification of claudin-5's interaction with ephrin-B1 in mouse hearts has also not been investigated in non-failing or failing human hearts. In this study we collected human left ventricular mid-myocardium histological samples from 7 non-failing hearts and 16 end-stage failing hearts. Immunoblots demonstrate severe reductions of claudin-5 protein in 14 of 16 failing hearts compared to non-failing controls. Claudin-5 was observed to localize to cardiomyocytes, endothelial cells, and a subset of fibroblasts in non-failing human heart sections. In isolated cardiomyocytes, the transmembrane claudin-5 protein localized in longitudinal striations in lateral membranes. In failing heart, both cardiomyocyte and endothelial claudin-5 localization was severely reduced, but claudin-5 remained in fibroblasts. Absence of claudin-5 staining also correlated with the reduction of the endothelial cell marker CD31. Ephrin-B1 localization, but not protein levels, was altered in failing hearts supporting that claudin-5 is required for ephrin-B1 localization. These data support that loss of claudin-5 in cardiomyocytes and endothelial cells is prevalent in human heart failure. Investigating claudin-5/ephrin-B1 protein complexes and gene regulation may lead to novel therapies. |
---|---|
ISSN: | 1054-8807 1879-1336 |
DOI: | 10.1016/j.carpath.2014.10.006 |