The Function of the Alula in Avian Flight

The alula is a small structure located at the joint between the hand-wing and arm-wing of birds and is known to be used in slow flight with high angles of attack such as landing. It is assumed to function similarly to a leading-edge slat that increases lift and delays stall. However, in spite of its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-05, Vol.5 (1), p.9914-9914, Article 9914
Hauptverfasser: Lee, Sang-im, Kim, Jooha, Park, Hyungmin, Jabłoński, Piotr G., Choi, Haecheon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alula is a small structure located at the joint between the hand-wing and arm-wing of birds and is known to be used in slow flight with high angles of attack such as landing. It is assumed to function similarly to a leading-edge slat that increases lift and delays stall. However, in spite of its universal presence in flying birds and the wide acceptance of stall delay as its main function, how the alula delays the stall and aids the flight of birds remains unclear. Here, we investigated the function of alula on the aerodynamic performance of avian wings based on data from flight tasks and wind-tunnel experiments. With the alula, the birds performed steeper descending flights with greater changes in body orientation. Force measurements revealed that the alula increases the lift and often delays the stall. Digital particle image velocimetry showed that these effects are caused by the streamwise vortex, formed at the tip of the alula, that induces strong downwash and suppresses the flow separation over the wing surface. This is the first experimental evidence that the alula functions as a vortex generator that increases the lift force and enhances manoeuvrability in flights at high angles of attack.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep09914