MicroRNA-93 Promotes Ovarian Granulosa Cells Proliferation Through Targeting CDKN1A in Polycystic Ovarian Syndrome

Context: MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression post-transcriptionally. Whether differently expressed miRNAs contribute to promoting granulosa cell proliferation in polycystic ovarian syndrome disease (PCOS) remains unknown. Objective: We explored wheth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2015-05, Vol.100 (5), p.E729-E738
Hauptverfasser: Jiang, Linlin, Huang, Jia, Li, Lin, Chen, Yaxiao, Chen, Xiaoli, Zhao, Xiaomiao, Yang, Dongzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression post-transcriptionally. Whether differently expressed miRNAs contribute to promoting granulosa cell proliferation in polycystic ovarian syndrome disease (PCOS) remains unknown. Objective: We explored whether certain miRNAs are involved in the ovarian dysfunction of PCOS and the mechanism of increased granulosa cells proliferation. Patients and Cells: miRNA expression was analyzed in excised ovarian cortexes from 16 women with PCOS and 8 non-PCOS. An immortalized human granulosa (KGN) cell was used for the mechanism study. Main Outcome Measures: Expressions of miRNAs in ovarian cortexes were measured using qRT-PCR and KGN granulosa cells were cultured for proliferation assays after overexpression or inhibition of miR-93 or after insulin treatment. Bioinformatics were used to identify the potential miRNA targets. Protein expression analysis, luciferase assays, and rescue assays were used to confirm the substrate of miR-93. Results: MiR-93 expression was higher in PCOS ovarian cortex and its identified target, CDKN1A, was downregulated. MiR-93 overexpression promoted cell proliferation and G1 to S transition. Knocking down CDKN1A promoted cell growth and cell cycle progression in granulosa cells, and CDKN1A re-introduction reversed the promotional role of miR-93. High concentrations of insulin induced upregulation of miR-93, stimulated KGN cells proliferation and reduced CDKN1A expression. Conclusions: miR-93 was increased in PCOS granulosa cells and targeted CDKN1A to promote proliferation and cell cycle progression. Insulin could upregulate the expression of miR-93 and stimulate cell proliferation. This might provide a new insight into the dysfunction of granulosa cells in PCOS.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2014-3827