Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations

Proteome Analyst (PA) (http://www.cs.ualberta.ca/~bioinfo/PA/) is a publicly available, high-throughput, web-based system for predicting various properties of each protein in an entire proteome. Using machine-learned classifiers, PA can predict, for example, the GeneQuiz general function and Gene On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2004-07, Vol.32 (suppl-2), p.W365-W371
Hauptverfasser: Szafron, Duane, Lu, Paul, Greiner, Russell, Wishart, David S., Poulin, Brett, Eisner, Roman, Lu, Zhiyong, Anvik, John, Macdonell, Cam, Fyshe, Alona, Meeuwis, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteome Analyst (PA) (http://www.cs.ualberta.ca/~bioinfo/PA/) is a publicly available, high-throughput, web-based system for predicting various properties of each protein in an entire proteome. Using machine-learned classifiers, PA can predict, for example, the GeneQuiz general function and Gene Ontology (GO) molecular function of a protein. In addition, PA is currently the most accurate and most comprehensive system for predicting subcellular localization, the location within a cell where a protein performs its main function. Two other capabilities of PA are notable. First, PA can create a custom classifier to predict a new property, without requiring any programming, based on labeled training data (i.e. a set of examples, each with the correct classification label) provided by a user. PA has been used to create custom classifiers for potassium-ion channel proteins and other general function ontologies. Second, PA provides a sophisticated explanation feature that shows why one prediction is chosen over another. The PA system produces a Naïve Bayes classifier, which is amenable to a graphical and interactive approach to explanations for its predictions; transparent predictions increase the user's confidence in, and understanding of, PA.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkh485