Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain an...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-04, Vol.112 (16), p.E2073-E2082 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.
Significance How does the heart of a healthy individual cease to function within just a few minutes in the absence of oxygen? We addressed this issue by simultaneously examining the heart and the brain in animal models during asphyxiation and found that asphyxia markedly stimulates neurophysiological and neurochemical activities of the brain. Furthermore, previously unidentified corticocardiac coupling showed increased intensity as the heart deteriorated. Blocking efferent input to the heart markedly increased survival time of both the heart and the brain. The results show that targeting the brain’s outflow may be an effective strategy to delay the death of the heart and the brain from asphyxia. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1423936112 |