Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity

Replication protein A (RPA) is the main eukaryotic single‐stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2015-03, Vol.37 (3), p.305-313
Hauptverfasser: Deng, Sarah K, Chen, Huan, Symington, Lorraine S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Replication protein A (RPA) is the main eukaryotic single‐stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by microhomology‐mediated end joining or the formation of hairpin structures that are substrates for structure‐selective nucleases. We suggest that replication fork catastrophe caused by depletion of RPA could result from cleavage of secondary structures by nucleases, and that failure to cleave hairpin structures formed at DNA ends could lead to gene amplification. These studies highlight the important role RPA plays in maintaining genome integrity.
ISSN:0265-9247
1521-1878
DOI:10.1002/bies.201400161