A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1
Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable lo...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2015-05, Vol.7 (5), p.455-462 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using
in situ
screening. One peptide exhibits a 10:1
in vitro
selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.
It is difficult to develop a selective ligand for point mutations in proteins that are not found in easily addressable locations. Now, an all-chemical, epitope-targeting strategy has been reported, and was used to discover an inhibitory peptide with selectivity for the E17K point mutation in the PH Domain of the Akt1 oncoprotein. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.2223 |