Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2015-04, Vol.125 (17), p.2597-2604
Hauptverfasser: Hoban, Megan D., Cost, Gregory J., Mendel, Matthew C., Romero, Zulema, Kaufman, Michael L., Joglekar, Alok V., Ho, Michelle, Lumaquin, Dianne, Gray, David, Lill, Georgia R., Cooper, Aaron R., Urbinati, Fabrizia, Senadheera, Shantha, Zhu, Allen, Liu, Pei-Qi, Paschon, David E., Zhang, Lei, Rebar, Edward J., Wilber, Andrew, Wang, Xiaoyan, Gregory, Philip D., Holmes, Michael C., Reik, Andreas, Hollis, Roger P., Kohn, Donald B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By codelivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34+ hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγnull mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34+ cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. •Delivery of ZFNs and donor templates results in high levels of gene correction in human CD34+ cells from multiple sources, including SCD BM.•Modified CD34+ cells are capable of engrafting immunocompromised NSG mice and produce cells from multiple lineages.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2014-12-615948