Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat

Flavor is produced by the integration of taste, olfaction, texture, and temperature, currently thought to occur in the cortex. However, previous work has shown that brainstem taste-related nuclei also respond to multisensory inputs. Here, we test the hypothesis that taste and olfaction interact in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2015-04, Vol.35 (16), p.6284-6297
Hauptverfasser: Escanilla, Olga D, Victor, Jonathan D, Di Lorenzo, Patricia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flavor is produced by the integration of taste, olfaction, texture, and temperature, currently thought to occur in the cortex. However, previous work has shown that brainstem taste-related nuclei also respond to multisensory inputs. Here, we test the hypothesis that taste and olfaction interact in the nucleus of the solitary tract (NTS; the first neural relay in the central gustatory pathway) in awake, freely licking rats. Electrophysiological recordings of taste and taste + odor responses were conducted in an experimental chamber following surgical electrode implantation and recovery. Tastants (0.1 m NaCl, 0.1 m sucrose, 0.01 m citric acid, and 0.0001 m quinine) were delivered for five consecutive licks interspersed with five licks of artificial saliva rinse delivered on a VR5 schedule. Odorants were n-amyl acetate (banana), acetic acid (vinegar), octanoic acid (rancid), and phenylethyl alcohol (floral). For each cell, metric space analyses were used to quantify the information conveyed by spike count, by the rate envelope, and by individual spike timing. Results revealed diverse effects of odorants on taste-response magnitude and latency across cells. Importantly, NTS cells were more competent at discriminating taste + odor stimuli versus tastants presented alone for all taste qualities using both rate and temporal coding. The strong interaction of odorants and tastants at the NTS underscores its role as the initial node in the neural circuit that controls food identification and ingestion.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.3526-14.2015