Rhodopsin 5– and Rhodopsin 6–Mediated Clock Synchronization in Drosophila melanogaster Is Independent of Retinal Phospholipase C-β Signaling
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock s...
Gespeichert in:
Veröffentlicht in: | Journal of biological rhythms 2012-02, Vol.27 (1), p.25-36 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpAP41) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpAP41 is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila. |
---|---|
ISSN: | 0748-7304 1552-4531 |
DOI: | 10.1177/0748730411431673 |