MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1
Atherosclerotic lesions develop preferentially at sites of disturbed blood flow. As shown by Christian Weber and his coworkers, this predilection stems from effects of disturbed blood flow on endothelial expression of the microRNA miR-126-5p, which maintains the proliferative reserve of endothelial...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2014-04, Vol.20 (4), p.368-376 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atherosclerotic lesions develop preferentially at sites of disturbed blood flow. As shown by Christian Weber and his coworkers, this predilection stems from effects of disturbed blood flow on endothelial expression of the microRNA miR-126-5p, which maintains the proliferative reserve of endothelial cells through repression of the Notch pathway inhibitor Dlk1.
Atherosclerosis, a hyperlipidemia-induced chronic inflammatory process of the arterial wall, develops preferentially at sites where disturbed laminar flow compromises endothelial cell (EC) function. Here we show that endothelial miR-126-5p maintains a proliferative reserve in ECs through suppression of the Notch1 inhibitor delta-like 1 homolog (Dlk1) and thereby prevents atherosclerotic lesion formation. Endothelial recovery after denudation was impaired in
Mir126
−/−
mice because lack of miR-126-5p, but not miR-126-3p, reduced EC proliferation by derepressing Dlk1. At nonpredilection sites, high miR-126-5p levels in endothelial cells confer a proliferative reserve that compensates for the antiproliferative effects of hyperlipidemia, such that atherosclerosis was exacerbated in
Mir126
−/−
mice. In contrast, downregulation of miR-126-5p by disturbed flow abrogated EC proliferation at predilection sites in response to hyperlipidemic stress through upregulation of Dlk1 expression. Administration of miR-126-5p rescued EC proliferation at predilection sites and limited atherosclerosis, introducing a potential therapeutic approach. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm.3487 |