Structural Basis of Latrophilin-FLRT Interaction
Latrophilins, receptors for spider venom α-latrotoxin, are adhesion type G-protein-coupled receptors with emerging functions in synapse development. The N-terminal region binds the endogenous cell adhesion molecule FLRT, a major regulator of cortical and synapse development. We present crystallograp...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2015-04, Vol.23 (4), p.774-781 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Latrophilins, receptors for spider venom α-latrotoxin, are adhesion type G-protein-coupled receptors with emerging functions in synapse development. The N-terminal region binds the endogenous cell adhesion molecule FLRT, a major regulator of cortical and synapse development. We present crystallographic data for the mouse Latrophilin3 lectin and olfactomedin-like (Olf) domains, thereby revealing the Olf β-propeller fold and conserved calcium-binding site. We locate the FLRT-Latrophilin binding surfaces by a combination of sequence conservation analysis, point mutagenesis, and surface plasmon resonance experiments. In stripe assays, we show that wild-type Latrophilin3 and its high-affinity interactor FLRT2, but not the binding-impaired mutants we generated, promote HeLa cell adhesion. In contrast, cortical neurons expressing endogenous FLRTs are repelled by wild-type Latrophilin3 and not by the binding-impaired mutant. Taken together, we present molecular level insights into Latrophilin structure, its FLRT-binding mechanism, and a role for Latrophilin and FLRT that goes beyond a simply adhesive interaction.
[Display omitted]
•The LPHN olfactomedin-like domain forms a five-bladed β propeller•A conserved calcium-binding site is located at the center of the protein•Latrophilin-FLRT binding depends on a conserved binding site•Mutations in the binding site inhibit Latrophilin-FLRT signaling
Jackson et al. describe a crystal structure of mLPHN3 lectin and olfactomedin-like (Olf) domains, revealing the Olf β-propeller fold and calcium-binding site. Assays using HeLa cells and cortical neurons reveal a bi-functional role for Olf and its ligand FLRT, leading to HeLa cell adhesion and neuron repulsion. |
---|---|
ISSN: | 0969-2126 1878-4186 |
DOI: | 10.1016/j.str.2015.01.013 |