High-Frequency Electroencephalographic Activity in Left Temporal Area Is Associated with Pleasant Emotion Induced by Video Clips
Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by neuroimaging techniques. In this paper, electroencephalogram (EEG) is used to explore the markers for video-induced emotions. The problem is approached from a classifier p...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2015-01, Vol.2015 (2015), p.1147-1160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by neuroimaging techniques. In this paper, electroencephalogram (EEG) is used to explore the markers for video-induced emotions. The problem is approached from a classifier perspective: the features that perform best in classifying person’s valence and arousal while watching video clips with audiovisual emotional content are searched from a large feature set constructed from the EEG spectral powers of single channels as well as power differences between specific channel pairs. The feature selection is carried out using a sequential forward floating search method and is done separately for the classification of valence and arousal, both derived from the emotional keyword that the subject had chosen after seeing the clips. The proposed classifier-based approach reveals a clear association between the increased high-frequency (15–32 Hz) activity in the left temporal area and the clips described as “pleasant” in the valence and “medium arousal” in the arousal scale. These clips represent the emotional keywords amusement and joy/happiness. The finding suggests the occurrence of a specific neural activation during video-induced pleasant emotion and the possibility to detect this from the left temporal area using EEG. |
---|---|
ISSN: | 1687-5265 1687-5273 |
DOI: | 10.1155/2015/762769 |