Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

Our results indicate that the salt tolerance of sugarbeet cultivars is only slightly less than that of their sea beet ancestor and that domestication and selection among sugar beet cultivars have not improved salt tolerance. While the yield of many traditional crops is reduced in salinized soils, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AoB Plants 2015-01, Vol.7
Hauptverfasser: Rozema, Jelte, Cornelisse, Danny, Zhang, Yuancheng, Li, Hongxiu, Bruning, Bas, Katschnig, Diana, Broekman, Rob, Ji, Bin, van Bodegom, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our results indicate that the salt tolerance of sugarbeet cultivars is only slightly less than that of their sea beet ancestor and that domestication and selection among sugar beet cultivars have not improved salt tolerance. While the yield of many traditional crops is reduced in salinized soils, sugar beet cultivars are tolerant to increased salinity. It is expected that salt tolerant sugar beet will be productive under seawater and brackish water irrigation in saline agriculture. The use of brackish and saline water for saline agriculture helps to prevent depletion of fresh water on earth. Abstract Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved s
ISSN:2041-2851
2041-2851
DOI:10.1093/aobpla/plu083