Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors
Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules a...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2015-04, Vol.194 (7), p.3463-3474 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1402097 |