Indocyanine Green-Loaded Nanoparticles for Image-Guided Tumor Surgery

Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2015-02, Vol.26 (2), p.294-303
Hauptverfasser: Hill, Tanner K, Abdulahad, Asem, Kelkar, Sneha S, Marini, Frank C, Long, Timothy E, Provenzale, James M, Mohs, Aaron M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the surgical site. In this study we demonstrate a series of hyaluronic acid (HLA)-derived nanoparticles that entrap the near-infrared dye indocyanine green, termed NanoICG, for improved delivery of the dye to tumors. Self-assembly of the nanoparticles was driven by conjugation of one of three hydrophobic moieties: aminopropyl-1-pyrenebutanamide (PBA), aminopropyl-5β-cholanamide (5βCA), or octadecylamine (ODA). Nanoparticle self-assembly, dye loading, and optical properties were characterized. NanoICG exhibited quenched fluorescence that could be activated by disassembly in a mixed solvent. NanoICG was found to be nontoxic at physiologically relevant concentrations and exposure was not found to inhibit cell growth. Using an MDA-MB-231 tumor xenograft model in mice, strong fluorescence enhancement in tumors was observed with NanoICG using a fluorescence image-guided surgery system and a whole-animal imaging system. Tumor contrast with NanoICG was significantly higher than with ICG alone.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc5005679