MicroRNA-520g Confers Drug Resistance by Regulating p21 Expression in Colorectal Cancer

Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-52...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-03, Vol.290 (10), p.6215-6225
Hauptverfasser: Zhang, Yang, Geng, Liying, Talmon, Geoffrey, Wang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53. Background: MicroRNAs are small non-protein-coding RNAs that inhibit target gene expression. Results: p53 suppresses miR-520g expression, and miR-520g mediates drug resistance through down-regulation of p21 expression. Conclusion: The p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. Significance: Our study identifies miR-520g as a potential target against drug resistance in colorectal cancer, especially in patients with mutant p53.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M114.620252