Spatial dynamics of evolving dosage compensation in a young sex chromosome system

The loss of Y-linked genes during sex chromosome evolution creates a potentially deleterious low gene dosage in males. Recent studies have reported different strategies of dosage compensation. Unfortunately, most of these studies investigated taxa with comparatively old sex chromosome systems, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome biology and evolution 2015-02, Vol.7 (2), p.581-590
Hauptverfasser: Schultheiß, Roland, Viitaniemi, Heidi M, Leder, Erica H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The loss of Y-linked genes during sex chromosome evolution creates a potentially deleterious low gene dosage in males. Recent studies have reported different strategies of dosage compensation. Unfortunately, most of these studies investigated taxa with comparatively old sex chromosome systems, which may limit insights into the evolution of dosage compensation and thus into the causes of different compensation strategies. Using deep RNA sequencing, we investigate differential expression patterns along the young XY chromosomes of threespine sticklebacks. Our strata-specific analyses provide new insights into the spatial patterns during the early stages of the evolution of dosage compensation. In particular, our results indicate systematic upregulation of male gene expression in stratum II, which in turn causes female hypertranscription in the same stratum. These findings are consistent with theoretical predictions that selection during early stages of sex chromosome evolution is stronger for a compensating upregulation in males than for the countercompensation of female hyperexpression. In contrast, no elevated gene expression is detectable in stratum I. We argue that strata-specific differences in compensating male gene expression may evolve in response to differences in the prevailing mechanism of Y chromosome degeneration.
ISSN:1759-6653
1759-6653
DOI:10.1093/gbe/evv013