Initiation of puberty in mice following decellularized ovary transplant

Abstract Clinical interventions to preserve fertility and restore hormone levels in female patients with therapy-induced ovarian failure are insufficient, particularly for pediatric cancer patients. Laparoscopic isolation of cortical ovarian tissue followed by cryopreservation with subsequent autotr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-05, Vol.50, p.20-29
Hauptverfasser: Laronda, Monica M, Jakus, Adam E, Whelan, Kelly A, Wertheim, Jason A, Shah, Ramille N, Woodruff, Teresa K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Clinical interventions to preserve fertility and restore hormone levels in female patients with therapy-induced ovarian failure are insufficient, particularly for pediatric cancer patients. Laparoscopic isolation of cortical ovarian tissue followed by cryopreservation with subsequent autotransplantation has temporarily restored fertility in at least 27 women who survived cancer, and aided in pubertal transition for one pediatric patient. However, reintroducing cancer cells through ovarian transplantation has been a major concern. Decellularization is a process of removing cellular material, while maintaining the organ skeleton of extracellular matrices (ECM). The ECM that remains could be stripped of cancer cells and reseeded with healthy ovarian cells. We tested whether a decellularized ovarian scaffold could be created, recellularized and transplanted to initiate puberty in mice. Bovine and human ovaries were decellularized, and the ovarian skeleton microstructures were characterized. Primary ovarian cells seeded onto decellularized scaffolds produced estradiol in vitro. Moreover, the recellularized grafts initiated puberty in mice that had been ovariectomized, providing data that could be used to drive future human transplants and have broader implications on the bioengineering of other organs with endocrine function.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2015.01.051