FXYD2, aγ subunit of Na+,K+-ATPase, maintains persistent mechanical allodynia induced by inflammation
Na+,K+-ATPase (NKA) is required to generate the resting membrane potential in neurons. Noeiceptive afferent neurons express not only the a and γ subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons i...
Gespeichert in:
Veröffentlicht in: | Cell research 2015-03, Vol.25 (3), p.318-334 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Na+,K+-ATPase (NKA) is required to generate the resting membrane potential in neurons. Noeiceptive afferent neurons express not only the a and γ subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with alNKA and negatively regulat- ed the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deflcient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/alNKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation. |
---|---|
ISSN: | 1001-0602 1748-7838 |
DOI: | 10.1038/cr.2015.12 |