Unifying immunology with informatics and multiscale biology

Dudley and colleagues review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology. The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology 2014-02, Vol.15 (2), p.118-127
Hauptverfasser: Kidd, Brian A, Peters, Lauren A, Schadt, Eric E, Dudley, Joel T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dudley and colleagues review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology. The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology.
ISSN:1529-2908
1529-2916
DOI:10.1038/ni.2787