Tumor Necrosis Factor (TNF)-α-induced Repression of GKAP42 Protein Levels through cGMP-dependent Kinase (cGK)-Iα Causes Insulin Resistance in 3T3-L1 Adipocytes
Insulin receptor substrates (IRSs) have been shown to be major mediators of insulin signaling. Recently, we found that IRSs form high-molecular weight complexes, and here, we identify by yeast two-hybrid screening a novel IRS-1-associated protein: a 42-kDa cGMP-dependent protein kinase-anchoring pro...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-02, Vol.290 (9), p.5881-5892 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insulin receptor substrates (IRSs) have been shown to be major mediators of insulin signaling. Recently, we found that IRSs form high-molecular weight complexes, and here, we identify by yeast two-hybrid screening a novel IRS-1-associated protein: a 42-kDa cGMP-dependent protein kinase-anchoring protein (GKAP42). GKAP42 knockdown in 3T3-L1 adipocytes suppressed insulin-dependent IRS-1 tyrosine phosphorylation and downstream signaling, resulting in suppression of GLUT4 translocation to plasma membrane induced by insulin. In addition, GLUT4 translocation was also suppressed in cells overexpressing GKAP42-N (the IRS-1 binding region of GKAP42), which competed with GKAP42 for IRS-1, indicating that GKAP42 binding to IRS-1 is required for insulin-induced GLUT4 translocation. Long term treatment of 3T3-L1 adipocytes with TNF-α, which induced insulin resistance, significantly decreased the GKAP42 protein level. We then investigated the roles of cGMP-dependent kinase (cGK)-Iα, which bound to GKAP42, in these changes. cGK-Iα knockdown partially rescued TNF-α-induced decrease in GKAP42 and impairment of insulin signals. These data indicated that TNF-α-induced repression of GKAP42 via cGK-Iα caused reduction of insulin-induced IRS-1 tyrosine phosphorylation at least in part. The present study describes analysis of the novel TNF-α-induced pathway, cGK-Iα-GKAP42, which regulates insulin-dependent signals and GLUT4 translocation.
IRS-1-associated proteins play roles in modulation of insulin-induced IRS-1 tyrosine phosphorylation.
A novel IRS-1-associated protein, GKAP42, is required to maintain availability of IRS-1 to the insulin receptor. TNF-α treatment suppressed the GKAP42 protein level.
TNF-α-induced insulin resistance is at least partially caused by GKAP42 protein level suppression.
We identified a novel TNF-α-induced pathway involved in insulin resistance. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M114.624759 |