Optical mapping in plant comparative genomics

Optical mapping has been widely used to improve de novo plant genome assemblies, including rice, maize, Medicago, Amborella, tomato and wheat, with more genomes in the pipeline. Optical mapping provides long-range information of the genome and can more easily identify large structural variations. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2015-02, Vol.4 (1), p.3-3, Article 3
Hauptverfasser: Tang, Haibao, Lyons, Eric, Town, Christopher D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical mapping has been widely used to improve de novo plant genome assemblies, including rice, maize, Medicago, Amborella, tomato and wheat, with more genomes in the pipeline. Optical mapping provides long-range information of the genome and can more easily identify large structural variations. The ability of optical mapping to assay long single DNA molecules nicely complements short-read sequencing which is more suitable for the identification of small and short-range variants. Direct use of optical mapping to study population-level genetic diversity is currently limited to microbial strain typing and human diversity studies. Nonetheless, optical mapping shows great promise in the study of plant trait development, domestication and polyploid evolution. Here we review the current applications and future prospects of optical mapping in the field of plant comparative genomics.
ISSN:2047-217X
2047-217X
DOI:10.1186/s13742-015-0044-y