Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils

Significance We show that tumor reprogramming of hematopoiesis in bone marrow occurs at the onset of malignant conversion and results in systemic expansion of circulating activated neutrophils that preferentially accumulate in lungs. Our data are, to our knowledge, the first to show that activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-02, Vol.112 (6), p.E566-E575
Hauptverfasser: Casbon, Amy-Jo, Reynaud, Damien, Park, Chanhyuk, Khuc, Emily, Gan, Dennis D., Schepers, Koen, Passegué, Emmanuelle, Werb, Zena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significance We show that tumor reprogramming of hematopoiesis in bone marrow occurs at the onset of malignant conversion and results in systemic expansion of circulating activated neutrophils that preferentially accumulate in lungs. Our data are, to our knowledge, the first to show that activation and not inhibition of myeloid differentiation is responsible for expansion and activity of T cell-suppressive myeloid cells; a tumor-derived factor targets the immature hematopoietic compartment to drive myeloid expansion; granulocyte-colony stimulating factor (G-CSF) is the only hematopoietic growth factor to increase in serum during early tumor development; prolonged G-CSF induces production of Rb1 ˡᵒʷ neutrophils and not short-term mobilization; and G-CSF acts in a cell intrinsic manner to expand multipotent progenitors to increase production of tumor-derived Ly6G ⁺ neutrophils. Expansion of myeloid cells associated with solid tumor development is a key contributor to neoplastic progression. Despite their clinical relevance, the mechanisms controlling myeloid cell production and activity in cancer remains poorly understood. Using a multistage mouse model of breast cancer, we show that production of atypical T cell-suppressive neutrophils occurs during early tumor progression, at the onset of malignant conversion, and that these cells preferentially accumulate in peripheral tissues but not in the primary tumor. Production of these cells results from activation of a myeloid differentiation program in bone marrow (BM) by a novel mechanism in which tumor-derived granulocyte-colony stimulating factor (G-CSF) directs expansion and differentiation of hematopoietic stem cells to skew hematopoiesis toward the myeloid lineage. Chronic skewing of myeloid production occurred in parallel to a decrease in erythropoiesis in BM in mice with progressive disease. Significantly, we reveal that prolonged G-CSF stimulation is both necessary and sufficient for the distinguishing characteristics of tumor-induced immunosuppressive neutrophils. These results demonstrate that prolonged G-CSF may be responsible for both the development and activity of immunosuppressive neutrophils in cancer.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1424927112