Can High-friction Intraannular Material Increase Screw Pullout Strength in Osteoporotic Bone?

Background Osteoporotic bone brings unique challenges to orthopaedic surgery, including a higher likelihood of problematic screw stripping in cancellous bone. Currently, there are limited options to satisfactorily repair stripped screws. Additionally, nonstripped screws hold with less purchase in os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical orthopaedics and related research 2015-03, Vol.473 (3), p.1150-1154
Hauptverfasser: Bronsnick, Daniel, Harold, Ryan E., Youderian, Ari, Solitro, Giovanni, Amirouche, Farid, Goldberg, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Osteoporotic bone brings unique challenges to orthopaedic surgery, including a higher likelihood of problematic screw stripping in cancellous bone. Currently, there are limited options to satisfactorily repair stripped screws. Additionally, nonstripped screws hold with less purchase in osteoporotic bone. Questions/purposes This study attempts to answer the following questions: (1) Does high-friction intraannular (HFIA) augmentation increase pullout strength in osteoporotic and in severely osteoporotic bone; and (2) can HFIA repair stripped bone thread in osteoporotic and severely osteoporotic bone? Methods We measured screw pullout strength using a synthetic bone model in three groups: (1) predrilled nonstripped control holes as controls; (2) predrilled nonstripped augmented with HFIA; and (3) predrilled stripped holes repaired with HFIA. We tested this in osteoporotic and severely osteoporotic synthetic bone for a total of six test groups. We measured screw pullout force using an electromechanical tensile-testing machine comparing pullout force between the test groups and controls. Results HFIA augmentation did not increase pullout force compared with the control group in the osteoporotic bone model (489 ± 175 versus 607 ± 76, respectively; effect size = 0.94 [95% confidence interval {CI}, −1.75 to 0.08], p = 0.06). However, in severely osteoporotic cancellous bone that was augmented, the HFIA material generated more pullout force than the control (51 ± 18 versus 35 ± 16, respectively; effect size = 0.94 [95% CI, −0.02 to 1.82], p = 0.05). In stripped holes, HFIA partially restored pullout strength but remained weaker than controls in both osteoporotic and severely osteoporotic bone models (osteoporotic: 320 ± 59 versus 607 ± 76, respectively; effect size = −4.28 [95% CI, −5.57 to −2.51], p 
ISSN:0009-921X
1528-1132
DOI:10.1007/s11999-014-3975-1