Biocompatibility and osteogenic properties of porous tantalum

Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and therapeutic medicine 2015-03, Vol.9 (3), p.780-786
Hauptverfasser: WANG, QIAN, ZHANG, HUI, LI, QIJIA, YE, LEI, GAN, HONGQUAN, LIU, YINGJIE, WANG, HUI, WANG, ZHIQIANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscopy (SEM). Osteoblasts were cultured with porous tantalum, and cell morphology, adhesion and proliferation were investigated using optical microscopy and SEM. In addition, porous tantalum rods were implanted in rabbits, and osteogenesis was observed using laser scanning confocal microscopy and hard tissue slice examination. The osteoblasts were observed to proliferate over time and adhere to the tantalum surface and pore walls, exhibiting a variety of shapes and intercellular connections. The porous tantalum rod connected tightly with the host bone. At weeks 2 and 4 following implantation, new bone and small blood vessels were observed at the tantalum-host bone interface and pores. At week 10 after the porous tantalum implantation, new bone tissue was observed at the tantalum-host bone interface and pores. By week 12, the tantalum-host bone interface and pores were covered with new bone tissue and the bone trabeculae had matured and connected directly with the materials. Therefore, the results of the present study indicate that porous tantalum is non-toxic, biocompatible and a promising material for use in bone tissue engineering applications.
ISSN:1792-0981
1792-1015
DOI:10.3892/etm.2015.2208