Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla

Diffuse myocardial fibrosis may be quantified with cardiovascular magnetic resonance (CMR) by calculating extra-cellular volume (ECV) from native and post-contrast T1 values. Accurate ECV calculation is dependent upon the contrast agent having reached equilibrium within tissue compartments. Previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular magnetic resonance 2015-01, Vol.17 (1), p.6-6, Article 6
Hauptverfasser: McDiarmid, Adam K, Swoboda, Peter P, Erhayiem, Bara, Ripley, David P, Kidambi, Ananth, Broadbent, David A, Higgins, David M, Greenwood, John P, Plein, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffuse myocardial fibrosis may be quantified with cardiovascular magnetic resonance (CMR) by calculating extra-cellular volume (ECV) from native and post-contrast T1 values. Accurate ECV calculation is dependent upon the contrast agent having reached equilibrium within tissue compartments. Previous studies have used infusion or single bolus injections of contrast to calculate ECV. In clinical practice however, split dose contrast injection is commonly used as part of stress/rest perfusion studies. In this study we sought to assess the effects of split dose versus single bolus contrast administration on ECV calculation. Ten healthy volunteers and five patients ( 4 ischaemic heart disease, 1 hypertrophic cardiomyopathy) were studied on a 3.0 Tesla (Philips Achieva TX) MR system and underwent two (patients) or three (volunteers) separate CMR studies over a mean of 12 and 30 days respectively. Volunteers underwent one single bolus contrast study (Gadovist 0.15mmol/kg). In two further studies, contrast was given in two boluses (0.075mmol/kg per bolus) as part of a clinical adenosine stress/rest perfusion protocol, boluses were separated by 12 minutes. Patients underwent one bolus and one stress perfusion study only. T1 maps were acquired pre contrast and 15 minutes following the single bolus or second contrast injection. ECV agreed between bolus and split dose contrast administration (coefficient of variability 5.04%, bias 0.009, 95% CI -3.754 to 3.772, r2 = 0.973, p = 0.001)). Inter-study agreement with split dose administration was good (coefficient of variability, 5.67%, bias -0.018, 95% CI -4.045 to 4.009, r2 = 0.766, p > 0.001). ECV quantification using split dose contrast administration is reproducible and agrees well with previously validated methods in healthy volunteers, as well as abnormal and remote myocardium in patients. This suggests that clinical perfusion CMR studies may incorporate assessment of tissue composition by ECV based on T1 mapping.
ISSN:1097-6647
1532-429X
1532-429X
DOI:10.1186/s12968-015-0112-6